If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7d^2+4d-4=0
a = 7; b = 4; c = -4;
Δ = b2-4ac
Δ = 42-4·7·(-4)
Δ = 128
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{128}=\sqrt{64*2}=\sqrt{64}*\sqrt{2}=8\sqrt{2}$$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-8\sqrt{2}}{2*7}=\frac{-4-8\sqrt{2}}{14} $$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+8\sqrt{2}}{2*7}=\frac{-4+8\sqrt{2}}{14} $
| 2x+18/6=8 | | 3/5+2x=21 | | 16.25=6.5t | | -8p=-2-7p | | -16f=18-15f | | 63-28=35*(x-x) | | h/7+22=29 | | (3x-6)=(5x-5) | | -2+4m=-9+5m | | 2x-21+x-21=90 | | .5x(x+3)=9 | | k-69/5=4 | | r-9.4=9.2 | | 4k(k-2)=2(k-9) | | w-66/10=2 | | -20-13k=13-12k-19 | | 3x + 7 = x +15 | | 9s-7=8s | | b/5+73=82 | | 63-28=x*(x-x) | | .5(x(2x+6))=180 | | -6j^2+3j+7=0 | | 4.25x+45=400 | | 3=3t | | p/9+71=75 | | 6x=108, | | 19t-14=18t | | 9.3=1.5n | | 32x-14=-3(x-13) | | 2(x-1)+x=16 | | x^2-55x=56 | | x+7.2=14.3 |